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L3 2024-2025

TD 9 : Produits tensoriels

Les exercices marqués d’un seront corrigés en TD, si le temps le permet.

Exercices importants

Exercice 1.
Soient E, F et G des espaces vectoriels de dimension finie supérieure à 2.

1. Donner un élément de E ⊗ F qui n’est pas un tenseur simple.
2. Donner un exemple d’espaces vectoriels E, F , G et d’application linéaire h : E ⊗ F → G

telle que h(x ⊗ y) ̸= 0 pour tout x de E \ {0} et y de F \ {0} mais qui n’est pas injective.
3. Que se passe-t-il si E ou F est de dimension 1 ?
4. Soient f : E → G et g : F → G des applications linéaires. Existe-t-il une application

linéaire φ : E ⊗ F → G telle que pour tout (x, y) ∈ E × F , φ(x ⊗ y) = f(x) + g(y) ?

Exercice 2. (Isomorphismes canoniques)
Soient E et F deux espaces vectoriels de dimension finie.

1. (a) Montrer que l’application E × F → F ⊗ E donnée par (x, y) 7→ y ⊗ x est bilinéaire.
En déduire qu’il existe une unique application linéaire

f : E ⊗ F → F ⊗ E

qui vérifie f(x ⊗ y) = y ⊗ x pour tout x ∈ E et y ∈ F . On construit de même une
application linéaire g : F ⊗ E → E ⊗ F telle que g(y ⊗ x) = x ⊗ y.

(b) Montrer que f ◦ g = IdF ⊗E et que g ◦ f = IdE⊗F . En particulier f et g réalisent des
isomorphismes entre E ⊗ F et F ⊗ E.

2. Montrer qu’on a un isomorphisme canonique γ : E∗ ⊗ F ∗ ∼= (E ⊗ F )∗.
3. Montrer qu’il existe un isomorphisme canonique Φ : E∗ ⊗ F ∼= Hom(E, F ) tel que pour

tout λ ∈ E∗ et y ∈ F , Φ(λ ⊗ y) = (x 7→ λ(x)y).

Exercice 3. (Produit tensoriel d’applications linéaires)
Soient E, E ′ et F, F ′ des espaces vectoriels de dimension finie. On se donne des applications

linéaires u : E → E ′ et v : F → F ′.
1. Soient V ⊂ E un sous-espace vectoriel de E et W ⊂ F un sous-espace vectoriel de F .

Montrer que V ⊗ W est isomorphe au sous-espace vectoriel de E ⊗ F engendré par les
x ⊗ y avec x ∈ V et y ∈ W . On identifiera alors V ⊗ W à ce sous-espace de E ⊗ F .

2. Montrer que, via l’identification de la question 1, Im(u ⊗ v) = Im(u) ⊗ Im(v). En déduire
que rg(u ⊗ v) = rg(u) rg(v).

3. Montrer que u et v sont surjectives (resp. injectives) si et seulement si u ⊗ v l’est.
4. Donner une formule générale pour ker(u ⊗ v) en fonction de ker(u) et ker(v).
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Exercice 4.
Soit E et F deux espaces vectoriels. Pour α ∈ E ⊗ F , on définit le rang de α comme le plus

petit entier r ⩾ 0 tel que α peut s’écrire comme une somme de r tenseurs simple.
Soit f ∈ Hom(E, F ). On considère l’élément α de E∗ ⊗ F correspondant à f via l’isomor-

phisme E∗ ⊗ F ∼= Hom(E, F ) (voir Exercice 2 question 3).
Montrer que le rang de f en tant qu’application linéaire est égal au rang de α ∈ E∗ ⊗ F .

Comparer ce résultat à celui de l’exercice 3 du TD 6.

Exercice 5. (Propriété universelle)
Soient E et F des espaces vectoriels et soient (xi)1⩽i⩽n ∈ En et (yi)1⩽i⩽n ∈ F n. Montrer que

n∑
i=1

xi ⊗ yi = 0

dans E ⊗ F si et seulement si pour toute forme bilinéaire f : E × F → K, on a
n∑

i=1
f(xi, yi) = 0.

Exercices supplémentaires

Exercice 6. (Trace et évaluation)
Soit E un espace vectoriel de dimension finie n.

1. Montrer qu’il existe une application linéaire ev : E ⊗ E∗ → K telle que pour tout x ∈ E
et tout λ ∈ E∗,

ev(x ⊗ λ) = λ(x).

2. On identifie K et K∗. Vérifier que la transposée de ev est l’application λ 7→ λ · ev.
3. Soit γ : (E ⊗ E∗)∗ → E∗ ⊗ E∗∗ l’isomorphisme de l’exercice 2. Soit (ei) une base de E.

Montrer que pour tout φ ∈ (E ⊗ E∗)∗, on a

γ(φ) =
n∑

i=1
φ(ei ⊗ ·) ⊗ φ(· ⊗ e∗

i ).

4. On définit l’application linéaire c : K → E∗ ⊗ E par

K (E ⊗ E∗)∗ E∗ ⊗ E∗∗ E∗ ⊗ E.
tev

c

γ Id ⊗τ

où τ est l’isomorphisme E∗∗ ∼= E de bidualité. Montrer à l’aide des questions précédentes
que c(1) =

n∑
i=1

e∗
i ⊗ ei.

5. Soit f ∈ End(E). Montrer que la composée

K E∗ ⊗ E E∗ ⊗ E Kc Id⊗f ev

est égale à la multiplication par la trace de f .
6. En déduire que Tr(f) = Tr(tf) et Tr(u ⊗ v) = Tr(u) Tr(v) (pour la deuxième question on

pourra remarquer que l’identification K ⊗ K = K est en fait l’application a ⊗ b 7→ a × b).
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Exercice 7. (Carré symétrique et carré alterné)
Soit E un espace vectoriel de dimension finie. On définit le carré symétrique de E comme

le quotient
Sym2(E) := E ⊗ E/ Vect(x ⊗ y − y ⊗ x)x,y∈E,

et le carré alterné de E comme le quotient

Λ2(E) := E ⊗ E/ Vect(x ⊗ x)x∈E.

On notera S(E × E) (resp. A(E × E)) les formes bilinéaires symétriques (resp. alternées)
ϕ : E × E → K.

1. Montrer que l’on a des isomorphismes canoniques

Sym2(E)∗ ∼= S(E × E) et Λ2(E)∗ ∼= A(E × E).

2. Pour x, y ∈ E, on note xy (resp. x ∧ y) l’image de x ⊗ y dans Sym2(E) (resp. Λ2(E)).
Donner des bases et les dimensions de Sym2(E) et Λ2(E).

3. On suppose dans cette question que car(K) ̸= 2.
(a) Montrer que Λ2(E) = E ⊗ E/ Vect(x ⊗ y + y ⊗ x)x,y∈E.
(b) On note τ : E ⊗ E → E ⊗ E l’application linéaire telle que pour tous x, y ∈ E, on

a τ(x ⊗ y) = y ⊗ x. Montrer que l’on a une décomposition

E ⊗ E = ker(τ − IdE⊗E) ⊕ ker(τ + IdE⊗E).

En déduire que Sym2(E) ∼= ker(τ − IdE⊗E) et que Λ2(E) ∼= ker(τ + IdE⊗E).
On appelle ker(τ − IdE⊗E) le sous-espace des tenseurs symétriques et ker(τ +IdE⊗E)
le sous-espace des tenseurs antisymétriques.

4. On note K[X1, . . . , Xn]2 l’espace vectoriel des polynômes homogènes de degré 2 en les
variables X1, . . . , Xn. Montrer que si dim(E) = n, on a un isomorphisme

Sym2(E∗) ∼= K[X1, . . . , Xn]2

donné par un choix de base de E.

Exercice 8. (Produit tensoriel de formes quadratiques)
Soient E1, E2 deux K-espaces vectoriels de dimension finie, avec K de caractéristique dif-

férente de 2.
1. Soient q1 ∈ Q(E1) et q2 ∈ Q(E2). On note ϕ1 et ϕ2 leurs formes polaires respectives.

Montrer qu’il existe une unique forme bilinéaire symétrique ϕ : (E1 ⊗ E2)2 → K telle que
pour tous x1, y1 ∈ E1, x2, y2 ∈ E2,

ϕ(x1 ⊗ x2, y1 ⊗ y2) = ϕ1(x1, y1)ϕ2(x2, y2).

2. En déduire qu’il existe une unique forme quadratique q ∈ Q(E1 ⊗ E2) telle que pour tous
x1 ∈ E1, x2 ∈ E2, q(x1 ⊗ x2) = q1(x1)q2(x2). On notera cette forme quadratique q1 ⊗ q2.

3. Soient e1, e2 des bases de E1 et E2 respectivement. Exprimer la matrice de q1 ⊗ q2 dans
la base e1 ⊗ e2 en fonctions de celle de q1 dans la base e1 et de celle de q2 dans la base e2.

4. Quel est le rang de q1 ⊗ q2 ?
5. On suppose q1 et q2 non dégénérées. Quel est le discriminant de q1 ⊗ q2 ?
6. Exprimer la signature de q1 ⊗ q2 en fonction des signatures de q1 et de q2 lorsque K = R.
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Exercice 9.
Soient E, F , G, et P des espaces vectoriels et soient f : E → F et g : F → G des applications

linéaires.
1. (a) Montrer que si g est surjective alors g ⊗ IdP : F ⊗ P → G ⊗ P est surjective, et que

si Im(f) ⊂ ker(g) alors Im(f ⊗ IdP ) ⊂ ker(g ⊗ IdP ).
(b) On suppose g surjective et Im(f) = ker(g). Soit r : G → F une fonction vérifiant

g ◦ r = IdG. Montrer que l’application h : G × P → (F ⊗ P )/Im(f ⊗ IdP ) définie par

h :
∣∣∣∣∣ G × P −→ (F ⊗ P )/Im(f ⊗ IdP )

(x, y) 7−→ r(x) ⊗ y

est bilinéaire.
(c) En déduire que si g est surjective et Im(f) = ker(g), alors Im(f ⊗IdP ) = ker(g⊗IdP ).
(d) Montrer que si f est injective, alors f ⊗ IdP est injective.

On a prouvé que si la suite

0 E F G 0f g

est exacte, alors la suite

0 E ⊗ P F ⊗ P G ⊗ P 0f⊗IdP g⊗IdP

l’est aussi.
2. Prouver réciproquement que si 0 E ⊗ P F ⊗ P G ⊗ P 0f⊗IdP g⊗IdP est

exacte alors 0 E F G 0f g l’est aussi.

Exercice 10. (Algèbres et produits tensoriels)
On dit que (A, +, ·, ×) est une K-algèbre si :

(a) (A, +, ·) est un K-espace vectoriel
(b) la loi × est une application bilinéaire de A × A dans A.

Soient A et B des K-algèbres.
1. Montrer qu’il existe une application bilinéaire m : (A ⊗ B) × (A ⊗ B) → A ⊗ B vérifiant

m(a ⊗ b, a′ ⊗ b′) = (aa′) ⊗ (bb′)

2. Montrer que m munit A ⊗ B d’une structure de K-algèbre.
3. Montrer que les K-algèbres K[X] ⊗ K[Y ] et K[X, Y ] sont isomorphes.
4. Montrer que le morphisme naturel de K-algèbres de K(X) ⊗ K(Y ) vers K(X, Y ) est

injectif mais non surjectif.
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